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Abstract
We present a six-loop calculation for Wilson’s β-function and for the crossover
exponentϕ of the tricritical O(n) symmetric φ6 theory in d = 3 − ε dimensions.
The counterterms of all but one of the 29 diagrams can be calculated
analytically, while for one diagram high-precision numerical calculations
together with the PSLQ integer relation search algorithm was used to come
up with an analytical result. The divergences of the dimensionally regularized
diagrams are removed by minimal subtraction.

PACS numbers: 64.60.Ak, 05.10.Cc, 64.60.Fr, 11.10.Hi

Renormalized Euclidean quantum field theory has been used to understand critical phenomena
during the last 30 years with remarkable success [1–4]. The renormalization group elucidated
the importance of dilatation invariance at a critical point and provided a theoretical basis for
scaling laws and critical point universality. Multiloop calculations of critical properties in the
framework of scalar O(n)-symmetric φ4-theory [4, 5] are in excellent quantitative agreement
with the most precise measurements on the λ-transition in 4He [6]. In systems with more
than one order parameter, lines of critical points can intersect in a multicritical point, giving
rise to more complicated scaling laws which are still not completely understood. Focusing on
tricritical behaviour, which can be described by a φ4–φ6-theory [7], the renormalization group
predicts mean field behaviour at the tricritical point, with universal logarithmic corrections to
scaling in the tricritical region [7–11]. Due to the slow crossover to the Gaussian fixed point,
it proved to be a rather difficult task to check the asymptotic RG predictions of φ6-theory
close to the tricritical point [11] in experiments and simulations. The calculation of the RG
flow functions at the six-loop level, which we present here, provides the input for a theoretical
description that describes the tricritical region with improved accuracy. In recent years our
understanding of the mathematical structures underlying perturbative quantum field theory
has made considerable progress by mapping Feynman diagrams of field theories with even
upper critical dimension (such as φ4 or φ3) to positive prime knots, thereby connecting the
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types of knots found in a diagram to the transcendental numbers in the diagram’s counterterm
(see [12] and references therein). For field theories with odd upper critical dimension, such
as φ6, different transcendental numbers show up in the counterterms, and understanding their
connection to knots may provide a deeper understanding of the as yet empirical connection
between Feynman diagrams, knots and numbers. The calculation of the counterterms for the
six-loop diagrams we present here provides a database to undertake this task.

We investigate an O(n)-symmetric theory of n real scalar fields φa (a ∈ {1, . . . , n}) with
the Lagrangian

L = 1

2
∂kφ

a∂kφ
a +
m2

0

2
φaφa +

u0

4!
(φaφa)2 +

w0

6!
(φaφa)3 (1)

in a Euclidean space with d = 3 − ε dimensions. Power counting reveals that both mass
and four-point coupling are relevant perturbations at d = 3, while the six-point coupling is
a marginal (irrelevant) perturbation. We perform a diagrammatic expansion in the six-point
coupling and use it to calculate the (tricritical) renormalization of propagator, mass and four-
point coupling perturbational. The bare field φ, mass m0 and couplings u0 andw0 are expressed
via renormalized variables by

φ = Z1/2
φ l

1−d/2
R φR (2)

m2
0 −m2

0c = Zm2 l−2
R m

2
R = Z2

Zφ
l−2
R m

2
R (3)

u0 − u0c = Zul(d−4)
R uR = Z4

Z2
φ

l
(d−4)
R uR (4)

w0

25π2
= Zwl2(d−3)

R w̄R = Z6

Z3
φ

l
2(d−3)
R w̄R. (5)

Here lR is an arbitrary length scale introduced to make all renormalized quantities
dimensionless, and a geometric factor 1/(25π2) has been absorbed in the renormalized
coupling w̄R . The Z-factors Z6, Z4, Z2 and Zφ are defined in order to remove the divergences,
which occur in the limit ε → 0, from the vertex functions �(L,N,M) with L insertions of φ2, N
insertions of φ4 and M external legs. Applying Bogoliubov’s incomplete R̄-operation [13, 14],
which recursively subtracts the divergences of all subdiagrams, and the K operation, which
selects the pole part of the Laurent series expansion in ε of an expression, we use

Zφ = 1 − ∂

∂k2
KR̄�(0,0,2) (k,m2

R,wR
)

(6)

Z2 = 1 − ∂

∂m2
R

KR̄�(0,0,2) (k,m2
R,wR

)
(7)

Z4 = 1 − 1

uR
KR̄�(0,1,4) (ki , m2

R,wR
)

(8)

Z6 = 1 − 1

wR
KR̄�(0,0,6) (ki , m2

R,wR
)

(9)

for the calculation of the Z-factors of interest. The equations (2)–(5) together with (6)–(9)
then define the renormalized theory, which is finite in the limit ε → 0. This renormalization
scheme of minimal subtraction of ε-poles for dimensionally regularized vertex functions is
described in great detail in [4, 13, 14] and was explained in the present context of φ6-theory
in [11]. Now Zφ and Z2 have already been calculated to six-loop order in [11], so we focus
on Z4 and Z6 here. At six-loop level the 29 diagrams drawn in figure 1 potentially contribute
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c2

d1 d2
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Figure 1. Twenty-nine six-loop diagrams contributing to the vertex function �(0,0,6).

to the divergences of the vertex function �(0,0,6) and therefore have to be considered in the
calculation of Z6. By infrared rearrangement [15], using one external momentum k for
regularization, we are able to make primitive all but six diagrams, which are of tetrahedron
topology. The primitive diagrams are easily calculated in terms of G-functions [14], although
some of them required the use of the R̄∗-operation [16] to subtract artificial IR-divergences
introduced by the IR-rearrangement. Five of the six diagrams of tetrahedron topology were
calculated via integration by parts [17] or with a new recursion relation [18]. The remaining
diagram (g2b) was reduced to a double sum via expansion in Gegenbauer polynomials [19]
and then calculated to a precision of 300 significant figures using recursion relations [20]
and convergence acceleration methods [21]. The numerical result for the double sum was
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Figure 1. (Continued.)

then matched to the analytical expression 4
3 [24β(4) + π2G] at 20 significant figures using

the integer relation search algorithm PSLQ [22]. Here β(x) denotes Dirichlet’s beta function
β(x) = ∑∞

n=0
(−1)n

(2n+ 1)x andG = β(2) is Catalan’s constant. The perfect match of the remaining
280 digits gives strong evidence that this is indeed a correct result.

The symmetry factor S = S1Gn of each diagram can be split into an n-dependent group
factor,Gn, from the summation over internal spin indices and a combinatorial factor, S1, which
was calculated from the formula [23]

S1 = 1

2!S+D3!T 4!F5!VNP

6!∑m
i=1 ni!

(10)
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where m is the number of vertices, S and D are the number of self- and double connections
between vertices, T , F and V are the numbers of triple, fourfold and fivefold connections,
respectively,ni is the number of external legs of vertex i andNP counts the number of (identical)
vertex permutations, that leave the diagram unchanged. Gn was calculated by summing the
internal spin indices with an O(n)-symmetric interaction for each diagram on a computer.

To obtain the diagrams contributing to �(0,1,4) at the six-loop level, we have to remove two
external vertices from a φ6-vertex from each diagram of figure 1 in all different possible ways.
This gives 41 diagrams with one φ4-vertex and four external legs. Since the counterterms are
unchanged by this operation, only the combinatorial factors need to be calculated via (10), with
6! changed to 4!, and a proper replacement of one φ6-vertex by a φ4-vertex in the summation
over spin indices. Insertion of our results together with the four-loop calculation of [11] into
(8) and (9) gives

Z4 = 1 +
1

ε

2(n + 4)

15
w̄ + (n + 4)

[
1

ε2

(n + 6)

45
− 1

ε

(
π2(n2 + 18n + 116)

7200
+
(19n + 126)

600

)]
w̄2
R

+ (n + 4)

[
1

ε3

4(n + 6)(2n + 13)

2025
− 1

ε2

(
277n2 + 3819n + 13 034

20 250

+
π2

81 000
(4n3 + 105n2 + 1274n + 4692)

)
+

1

ε

(
1

30 375
(686n2 + 10 425n

+ 38 914) +
1

243 000
π2(45n3 + 1258n2 + 13 168n + 43 204)

− 1

81 000
π2 ln(2)(3n3 + 19n2 − 564n− 3508)

+
1

162 000
π4(n3 + 40n2 + 440n + 1544)− 7

2250
ζ(3)(n + 14)(2n + 13)

+
1

10 125
(24β(4) + π2G)(7n2 + 132n + 536)

)]
w̄3
R + O(

w̄4
R

)
(11)

Z6 = 1 +
1

ε

(3n + 22)

15
w̄R +

[
1

ε2

9n2 + 132n + 484

225

− 1

ε

(
π2(n3 + 34n2 + 620n + 2720)

7200
+

71n2 + 1146n + 4408

1200

)]
w̄2
R

+

[
1

ε3

(3n + 22)3

3375
− 1

ε2

(
(3n + 22)

162 000
(1489n2 + 24 054n + 92 552)

+
7π2

324 000
(3n + 22)(n3 + 34n2 + 620n + 2720)

)

+
1

ε

(
1

60 750
(2787n3 + 68 984n2 + 551 652n + 1425 952)

+
1

162 000
π2(36n4 + 1607n3 + 33 568n2 + 273 772n + 735 392)

− 1

27 000
π2 ln(2)(n4 + n3 − 700n2 − 8236n− 24 816)

+
1

129 600
π4(n4 + 64n3 + 1352n2 + 12 248n + 36 960)
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− 7

5400
ζ(3)(11n3 + 428n2 + 4228n + 12 208) +

1

20 250
(24β(4) + π2G)

× (31n3 + 1126n2 + 11 876n + 37 592)

)]
w̄3
R + O(

w̄4
R

)
. (12)

The β function and the exponent functions η, ν and ϕ are then obtained from the standard
definitions

β(w̄R) = −lR ∂w̄R
∂lR

= −2εw̄R

1 + w̄R
∂ lnZw
∂w̄R

(13)

η(w̄R) = −lR ∂
∂lR

lnZφ = β(w̄R)∂ lnZφ
∂w̄R

(14)

γm2(w̄R) = lR ∂
∂lR

lnZm2 = −β(w̄R)∂ lnZm2

∂w̄R
(15)

γu(w̄R) = lR ∂
∂lR

lnZu = −β(w̄R)∂ lnZu
∂w̄R

(16)

together with the relations [7]

γm2 = 2 − 1

ν
ϕ = ν(1 + ε − γu). (17)

Using (2), (12) and the result for Zφ given in [11], we find for the Wilson function (13)

β(w̄R)= − 2εw̄R +
6n + 44

15
w̄2
R −

(
π2(n3 + 34n2 + 620n + 2720)

1800
+

53n2 + 858n + 3304

225

)

× w̄3
R +

(
1

6750
(1857n3 + 45 976n2 + 367 716n + 950 576)

+
1

27 000
π2(36n4 + 1607n3 + 33 568n2 + 273 772n + 735 392)

− 1

4500
π2 ln(2)(n4 + n3 − 700n2 − 8236n− 24 816)

+
1

21 600
π4(n4 + 64n3 + 1352n2 + 12 248n + 36 960)

− 7

900
ζ(3)(11n3 + 428n2 + 4228n + 12 208) +

1

3375
(24β(4)

+π2G)(31n3 + 1126n2 + 11 876n + 37 592)

)
w̄4
R + O(

w̄5
R

)
. (18)

Similarly we find for the exponent functions

η(w̄R) = (n + 2)(n + 4)

2700
w̄2
R − (n + 2)(n + 4)(3n + 22)

60 750
w̄3
R + O(

w̄4
R

)
(19)

ν(w̄R) = 1

2
+
(n + 2)(n + 4)

675
w̄2
R −

(
π2(n4 + 24n3 + 172n2 + 480n + 448)

216 000

+
3n3 + 40n2 + 156n + 176

2430

)
w̄3
R + O(

w̄4
R

)
(20)
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γu(w̄R) = 4(n + 4)

15
w̄R − (n + 4)

5400
(3π2(n2 + 18n + 116) + 8(85n + 566))w̄2

R

+ (n + 4)

(
1

30 375
(4113n2 + 62 522n + 233 440)

+
1

40 500
π2(45n3 + 1258n2 + 13 168n + 43 204)

− 1

13 500
π2 ln(2)(3n3 + 19n2 − 564n− 3805)

+
1

27 000
π4(n3 + 40n2 + 440n + 1544)− 7

375
ζ(3)(n + 14)(2n + 13)

+
2

3375
(24β(4) + π2G)(7n2 + 132n + 536)

)
w̄3
R + O(

w̄4
R

)
. (21)

In the ε-expansion the nontrivial infrared-stable fixed point emerging for d < 3 is given by

w̄∗
R = 15ε

3n + 22
+

15

16

π2(n3 + 34n2 + 620n + 2720) + 424n2 + 6864n + 26 432

(3n + 22)3
ε2

+
1

(3n + 22)5

(
15

4
(47n4 + 3114n3 + 58 156n2 + 397 848n + 920 160)

− 15

16
π2(293n4 + 5386n3 − 17 100n2 − 535 320n− 1795 136)

− 45

8
π2 ln(2)(3n + 22)(n4 + n3 − 700n2 − 8236n− 24 816)

+
15

64
π4(19n5 + 128n4 + 3520n3 + 47 760n2 + 215 280n + 366 400)

+
1575

8
ζ(3)(3n + 22)(11n3 + 428n2 + 4228n + 12 208) − 15

2
(24β(4)

+π2G)(3n + 22)(31n3 + 1126n2 + 11 876n + 37 592)

)
ε3 + O(ε4). (22)

The fixed point values of the exponents take the form

η(w̄∗
R) = 1

12

(n + 2)(n + 4)

(3n + 22)2
ε2

×
(

1 +
π2(3n3 + 102n2 + 1860n + 8160) + 1128n2 + 18 480n + 71 552

24(3n + 22)2
ε

)

+O(ε4) (23)

ν(w̄∗
R) = 1

2
+

1

3

(n + 2)(n + 4)

(3n + 22)2
ε2

+
π2(−3n5 + 114n4 + 10 572n3 + 114 072n2 + 403 584n + 433 536)

576(3n + 22)4
ε3

+
(2976n4 + 76 992n3 + 625 792n2 + 1956 096n + 1 977 344)

576(3n + 22)4
ε3 + O(ε4) (24)
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ϕ(w̄∗
R) = 1

2
− (n− 6)

2(3n + 22)
ε

+
(n + 4)(π2(n3 + 8n2 + 496n + 2888)− 8(19n2 + 508n + 2428))

16(3n + 22)3
ε2

+
(n + 4)

(3n + 22)5

(
(185n4 + 5423n3 + 50 190n2 + 171 156n + 140 696)

− 1

192
π2(267n5 + 2784n4 − 231 552n3 − 3463 216n2 − 16 666 288n

− 27 085 120)+
1

8
π2 ln(2)(3n + 22)(3n4 + 117n3 + 2926n2 + 26 484n

+ 71 720) +
1

128
π4(n6 + 30n5 + 740n4 + 19 416n3 + 215 120n2 + 1132 896n

+ 2428 672)− 21

4
ζ(3)(3n + 22)(19n3 + 1138n2 + 12 452n + 37 016)

+ 2(24β(4) + π2G)(3n + 22)(5n3 + 288n2 + 3682n + 12 900)

)
ε3 + O(ε4).

(25)

Our ε-expansions coincide with earlier results for η and ϕ to order ε2 [24], obtained in a
massive RG-scheme with cut-off regularization.

For n = 2, corresponding to 3He–4He mixtures, the series in w̄R have the numerical form:

β(w̄R) = −2εw̄R + 3.733 33w̄2
R − 45.756 03w̄3

R + 1604.926 64w̄4
R + · · · (26)

η = 0.008 89w̄2
R − 0.011 06w̄3

R + · · · (27)

ν = 0.5 + 0.035 55w̄2
R − 0.381 82w̄3

R + · · · (28)

γu = 1.6w̄R − 11.674 41w̄2
R + 313.393 35w̄3

R + · · · . (29)

The n = 2 ε-expansions read, numerically,

η = 0.002 551ε2 + 0.031 798ε3 + · · · (30)

ν = 0.5 + 0.010 204ε2 + 0.075 292ε3 + · · · (31)

ϕ = 0.5 + 0.071 428ε − 1.128 473ε2 + 13.907 664ε3 + · · · . (32)

As a general trend, the coefficients in the w̄R and ε-expansions show already a pronounced
growth roughly by a factor 10 in each order. This indicates that the strong asymptotic
divergence proportional to (2k)! (compared to k! for a φ4-theory) of the coefficients in kth
order perturbation theory, predicted by instanton methods [25, 26], shows up already in our
comparatively short series. We can quantify this statement a little bit by comparing the actual
ratios β2/β1 = −12.26 and β3/β2 = −35.08 of the consecutive expansion coefficients in (26)
with the asymptotic behaviour for large order k of perturbation theory of a φ2r -theory

βk = [k(r − 1)]!akkbc

(
1 + O

(
1

k

))
(33)

which gives β2/β1 = −39.13 and β3/β2 = −26.80, with a = −64/45π2 and b = (7 + n)/2
in the case of n = 2 [25, 26]. Since the divergence of the expansion coefficients has already
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the right order of magnitude, one can hope to extract reasonable approximants for the RG-
functions by applying Borel resummation or other resummation techniques [27, 28]. We
intend to pursue this avenue in applications of our results to dilute polymer solutions in the
case n = 0 [10, 29], in order to quantitatively describe experiments and simulations of polymer
demixing close to the ,-point.
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